Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
17_equations [2024-05-05 11:08] nik17_equations [2024-08-12 11:04] (current) nik
Line 4: Line 4:
  
  
-==== Pythagorean Theorem ====+=== Pythagorean Theorem ===
  
 $$a^2 + b^2 = c^2$$ $$a^2 + b^2 = c^2$$
  
-==== Logarithms ====+---- 
 +=== Logarithms ===
  
 $$log{xy} = log{x} + log{y}$$ $$log{xy} = log{x} + log{y}$$
  
-==== Calculus ====+---- 
 +=== Calculus ===
  
-$$\frac{\partial f}{\partial t} = \lim_{x\to\infty} =  \frac{f{(t+h)}- f{(t)}}{h}$$+$$\frac{\partial f}{\partial t} = \lim_{h\to\infty} =  \frac{f{(t+h)}- f{(t)}}{h}$$
  
  
-==== Newton’s Law of Gravity ====+---- 
 +=== Newton’s Law of Gravity ===
  
 $${F}_\text{gravity}=G\frac{m_{1}m_{2}}{r^{2}}$$ $${F}_\text{gravity}=G\frac{m_{1}m_{2}}{r^{2}}$$
  
-==== Complex Numbers ====+---- 
 +=== Complex Numbers ===
  
 $$i^2=-1$$ $$i^2=-1$$
  
-==== Euler’s Formula for Polyhedra ====+---- 
 +=== Euler’s Formula for Polyhedra ===
  
-==== Normal Distribution ====+$$V-E+F=2$$ 
 +---- 
 +=== Normal Distribution ===
  
-==== Wave Equation ====+$$\Phi(x)\frac{1}{\sqrt{2\pi\rho}} e^{\frac{(x-\mu)^2}{2\rho^2}}$$
  
-==== Fourier Transform ====+---- 
 +=== Wave Equation ===
  
-==== Navier-Stokes Equation ====+$$\frac{\partial^2 u}{\partial t^2} c^2 \frac{\partial^2 u}{\partial x^2}$$
  
-==== Maxwell’s Equations ====+---- 
 +=== Fourier Transform ===
  
-$$\begin{aligned}   +$$f(\omega) = \int_{\infty}^{\infty}f(x)e^{-2\pi i x \omega} \text{d}x$$ 
-&\nabla\cdot\mathcal{E} = 0 + 
 +---- 
 +=== Navier-Stokes Equation === 
 + 
 +$$\rho\left(\frac{d\text{v}}{dt} + \text{v} \cdot \text{v}\nabla \right) = -\nabla p + \nabla \cdot \text{T} + \text{f}$$ 
 + 
 +---- 
 +=== Maxwell’s Equations === 
 + 
 +$$\begin{aligned} 
 +&\nabla\cdot\mathcal{E} = 0
 &\nabla\cdot\mathcal{H} = 0 &\nabla\cdot\mathcal{H} = 0
 \end{aligned}$$ \end{aligned}$$
  
-$$\begin{aligned} +$$\begin{aligned}
 &\nabla\times\mathcal{E} = - \frac{1}{c}\frac{\partial\mathcal{H}}{\partial t} &\nabla\times\mathcal{E} = - \frac{1}{c}\frac{\partial\mathcal{H}}{\partial t}
 &\nabla\times\mathcal{H} = - \frac{1}{c}\frac{\partial\mathcal{E}}{\partial t} &\nabla\times\mathcal{H} = - \frac{1}{c}\frac{\partial\mathcal{E}}{\partial t}
 \end{aligned}$$ \end{aligned}$$
  
-==== Second Law of Thermodynamics ====+---- 
 +=== Second Law of Thermodynamics ===
  
 $$dS\geq0$$ $$dS\geq0$$
  
-==== Relativity ====+---- 
 +=== Relativity ===
  
 $$E=mc^2$$ $$E=mc^2$$
  
-==== Schrodinger’s Equation ====+---- 
 +=== Schrödinger’s Equation ===
  
 +$$ih \frac{\delta}{\delta t}\Psi = H\Psi$$
  
-==== Information Theory ====+ 
 +---- 
 +=== Information Theory ===
  
 $$H=-\sum p(x) + log{p(x)}$$ $$H=-\sum p(x) + log{p(x)}$$
  
-==== Chaos Theory ====+---- 
 +=== Chaos Theory ===
  
 $$x_{t+1} = kx_t(1-x_i)$$ $$x_{t+1} = kx_t(1-x_i)$$
  
-==== Black-Scholes Equation ====+---- 
 +=== Black-Scholes Equation === 
 + 
 +$$\frac{1}{2}\sigma^2S^2 \frac{\delta^2 V}{\delta S^2} + rS \frac{\delta V}{\delta S} + \frac{\delta V}{\delta t} - rV 0$$
  
 +----