Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
17_equations [2024-05-20 14:39] nik17_equations [2024-08-12 11:04] (current) nik
Line 8: Line 8:
 $$a^2 + b^2 = c^2$$ $$a^2 + b^2 = c^2$$
  
 +----
 === Logarithms === === Logarithms ===
  
 $$log{xy} = log{x} + log{y}$$ $$log{xy} = log{x} + log{y}$$
  
 +----
 === Calculus === === Calculus ===
  
-$$\frac{\partial f}{\partial t} = \lim_{x\to\infty} =  \frac{f{(t+h)}- f{(t)}}{h}$$+$$\frac{\partial f}{\partial t} = \lim_{h\to\infty} =  \frac{f{(t+h)}- f{(t)}}{h}$$
  
  
 +----
 === Newton’s Law of Gravity === === Newton’s Law of Gravity ===
  
 $${F}_\text{gravity}=G\frac{m_{1}m_{2}}{r^{2}}$$ $${F}_\text{gravity}=G\frac{m_{1}m_{2}}{r^{2}}$$
  
 +----
 === Complex Numbers === === Complex Numbers ===
  
 $$i^2=-1$$ $$i^2=-1$$
  
 +----
 === Euler’s Formula for Polyhedra === === Euler’s Formula for Polyhedra ===
  
 +$$V-E+F=2$$
 +----
 === Normal Distribution === === Normal Distribution ===
  
 +$$\Phi(x)= \frac{1}{\sqrt{2\pi\rho}} e^{\frac{(x-\mu)^2}{2\rho^2}}$$
 +
 +----
 === Wave Equation === === Wave Equation ===
  
 +$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$
 +
 +----
 === Fourier Transform === === Fourier Transform ===
  
 +$$f(\omega) = \int_{\infty}^{\infty}f(x)e^{-2\pi i x \omega} \text{d}x$$
 +
 +----
 === Navier-Stokes Equation === === Navier-Stokes Equation ===
  
 +$$\rho\left(\frac{d\text{v}}{dt} + \text{v} \cdot \text{v}\nabla \right) = -\nabla p + \nabla \cdot \text{T} + \text{f}$$
 +
 +----
 === Maxwell’s Equations === === Maxwell’s Equations ===
  
-$$\begin{aligned}   +$$\begin{aligned} 
-&\nabla\cdot\mathcal{E} = 0 +&\nabla\cdot\mathcal{E} = 0
 &\nabla\cdot\mathcal{H} = 0 &\nabla\cdot\mathcal{H} = 0
 \end{aligned}$$ \end{aligned}$$
  
-$$\begin{aligned} +$$\begin{aligned}
 &\nabla\times\mathcal{E} = - \frac{1}{c}\frac{\partial\mathcal{H}}{\partial t} &\nabla\times\mathcal{E} = - \frac{1}{c}\frac{\partial\mathcal{H}}{\partial t}
 &\nabla\times\mathcal{H} = - \frac{1}{c}\frac{\partial\mathcal{E}}{\partial t} &\nabla\times\mathcal{H} = - \frac{1}{c}\frac{\partial\mathcal{E}}{\partial t}
 \end{aligned}$$ \end{aligned}$$
  
 +----
 === Second Law of Thermodynamics === === Second Law of Thermodynamics ===
  
 $$dS\geq0$$ $$dS\geq0$$
  
 +----
 === Relativity === === Relativity ===
  
 $$E=mc^2$$ $$E=mc^2$$
  
-=== Schrodinger’s Equation ===+---- 
 +=== Schrödinger’s Equation ===
  
 +$$ih \frac{\delta}{\delta t}\Psi = H\Psi$$
  
 +
 +----
 === Information Theory === === Information Theory ===
  
 $$H=-\sum p(x) + log{p(x)}$$ $$H=-\sum p(x) + log{p(x)}$$
  
 +----
 === Chaos Theory === === Chaos Theory ===
  
 $$x_{t+1} = kx_t(1-x_i)$$ $$x_{t+1} = kx_t(1-x_i)$$
  
 +----
 === Black-Scholes Equation === === Black-Scholes Equation ===
  
 +$$\frac{1}{2}\sigma^2S^2 \frac{\delta^2 V}{\delta S^2} + rS \frac{\delta V}{\delta S} + \frac{\delta V}{\delta t} - rV = 0$$
 +
 +----