This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
17_equations [2024-05-20 14:43] – nik | 17_equations [2024-08-12 11:04] (current) – nik | ||
---|---|---|---|
Line 16: | Line 16: | ||
=== Calculus === | === Calculus === | ||
- | $$\frac{\partial f}{\partial t} = \lim_{x\to\infty} = \frac{f{(t+h)}- f{(t)}}{h}$$ | + | $$\frac{\partial f}{\partial t} = \lim_{h\to\infty} = \frac{f{(t+h)}- f{(t)}}{h}$$ |
Line 32: | Line 32: | ||
=== Euler’s Formula for Polyhedra === | === Euler’s Formula for Polyhedra === | ||
+ | $$V-E+F=2$$ | ||
---- | ---- | ||
=== Normal Distribution === | === Normal Distribution === | ||
+ | |||
+ | $$\Phi(x)= \frac{1}{\sqrt{2\pi\rho}} e^{\frac{(x-\mu)^2}{2\rho^2}}$$ | ||
---- | ---- | ||
=== Wave Equation === | === Wave Equation === | ||
+ | |||
+ | $$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$ | ||
---- | ---- | ||
=== Fourier Transform === | === Fourier Transform === | ||
+ | |||
+ | $$f(\omega) = \int_{\infty}^{\infty}f(x)e^{-2\pi i x \omega} \text{d}x$$ | ||
---- | ---- | ||
=== Navier-Stokes Equation === | === Navier-Stokes Equation === | ||
+ | |||
+ | $$\rho\left(\frac{d\text{v}}{dt} + \text{v} \cdot \text{v}\nabla \right) = -\nabla p + \nabla \cdot \text{T} + \text{f}$$ | ||
---- | ---- | ||
=== Maxwell’s Equations === | === Maxwell’s Equations === | ||
- | $$\begin{aligned} | + | $$\begin{aligned} |
- | & | + | & |
& | & | ||
\end{aligned}$$ | \end{aligned}$$ | ||
- | $$\begin{aligned} | + | $$\begin{aligned} |
& | & | ||
& | & | ||
Line 68: | Line 77: | ||
---- | ---- | ||
- | === Schrodinger’s Equation === | + | === Schrödinger’s Equation === |
+ | |||
+ | $$ih \frac{\delta}{\delta t}\Psi = H\Psi$$ | ||
Line 84: | Line 95: | ||
=== Black-Scholes Equation === | === Black-Scholes Equation === | ||
+ | $$\frac{1}{2}\sigma^2S^2 \frac{\delta^2 V}{\delta S^2} + rS \frac{\delta V}{\delta S} + \frac{\delta V}{\delta t} - rV = 0$$ | ||
+ | |||
+ | ---- | ||