Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
groworld_story [2020-06-06 08:30] – old revision restored (2009-05-19 15:03) 114.119.166.29groworld_story [2022-10-14 13:14] (current) – [groWorld: Borrowed Scenery] maja
Line 1: Line 1:
 ===== groWorld: Borrowed Scenery ===== ===== groWorld: Borrowed Scenery =====
  
-draft 200904: towards pataphores of [[plant guilds]]... (at the moment prosaic descriptions based on metaphores and archetypes, not very 'pata' yet).+Towards pataphores of [[plant guilds]]... beginnings of a taxonomy of plant characters for the Jiejing /Borrowed Scenery Alternate Reality Narrative.
  
 +{{>http://www.flickr.com/photos/foam/4440835005/ ?maxwidth=800}}
 +//Illustrations by Theun Karelse and Lina Kusaite on [[https://www.flickr.com/photos/foam/albums/72157610724467408|flickr]]//
 +
 +[[groworld story excerpts]]
 ==== Layers ==== ==== Layers ====
  
Line 19: Line 23:
  
 == Roots == == Roots ==
-The canopy trees reach deep into the soil and have a long tap root, able to reach underground rivers. Until they find a large water source, the plants' root doesn't waste time growing horizontally - the plant thickens the one root and grows downwards as fast as it can. In case of draught, it will send a few exploratory rootlets in horizontal direction, but even these rootlets will grow horizontally for a short time before resuming the vertical, downwards growth. Once a large enough amount of water is found, the plant will extend the roots, that resemble the branches of its canopy -  it will attempt to envelop the water source as far and wide as possible, growing both thick roots and thin rootlets in all directions. The colour of the roots is similar to the seeds - blue-grey and bone white.+The canopy trees reach deep into the soil and have a long tap root, able to reach underground rivers. Until they find a large water source, the plants' root doesn't waste time growing horizontally - the plant thickens the one root and grows downwards as fast as it can (using a cork-screw motion, to dig into the ground). In case of draught, it will send a few exploratory rootlets in horizontal direction, but even these rootlets will grow horizontally for a short time before resuming the vertical, downwards growth. Once a large enough amount of water is found, the plant will extend the roots, that resemble the branches of its canopy -  it will attempt to envelop the water source as far and wide as possible, growing both thick roots and thin rootlets in all directions. The colour of the roots is similar to the seeds - blue-grey and bone white.
  
 == Stems/Trunks == == Stems/Trunks ==
 +
 +The stem of a canopy tree is very thin to start with. It is extremely resilient and elastic, so it can bend and twist easily (making it resistant to storms and other violent attacks). Its inner skeleton keeps the plant growing upright - the skeleton resembles a double cork-screw (like a DNA helix), spiralling its way through the air and pushing the leaf-bud higher. The cork-screw is made out of microscopic ball-bearings, clinging to each other using a strong, but elastic force. This structure allows the plant to grow fast, without wasting time on thickening the trunk until it reaches canopy height. The strength of the stem is it its ability to always spring back to a vertical position, no matter how much it's bent and twisted. As the tree matures (reaching canopy height), the stem starts thickening and solidifying into a woody trunk. Inside the trunk, the double corkscrew swells up and softens, dissolving the ball-bearings into semi-permeable osmotic chambers. These structures will now function as osmotic pumps, allowing the exchange of nutrients and water between the canopy height and the deep underground roots. The woody skin of the trunk takes a long time to mature and harden. The process of hardening spirals around the trunk. A 'teenage' stem will have quite ornamental spirals of hard bark swirling around the bright green skin of the young sapling. The bark is also quite irregular, reflecting the storms and turbulence that happened during its hardening. In parts where the tree was threatening to break, the bark will grow a thick swirl, as a scab on a wound. These swirls will form orifices on some trees, from which seed-pods can be expelled. Once hardened, the bark solidifies into a sturdy, rock-like outer skin, that erodes very slowly over hundreds of years.
  
 == Leaves == == Leaves ==
 +Canopy trees can have a variety of leaves, all of which share a few common characteristics. They all have a structure of several long, hollow bones, that originate in the bud on top of the trunk and spread radially across the whole surface of the leaf. The bones are a part of the osmotic pump that begins at the edges of the leaf and continues through the trunk into the roots. In between the bones stretch a myriad of thin, elastic capillaries, that form a see-through lace-like structure. The openings between the capillaries are filled with green film (not unlike green soap-bubbles). These membranes are very thin and nearly translucent (allowing enough light to pass through them to illuminate the layers below). 
 +
 +== Growth ==
 +Above ground, the seedling of a canopy layer shoots straight upward, without branching out at first. The seedling will have one thin stem, with a fluffy, leafy bud on top. The growth is solely vertical until the stem thickens. The thickness of the trunk is completed when the canopy height is reached. On this height, the leafy bud on the top of the trunk starts branching outwards in all directions. The leaves grow slowly (it takes them years to reach their full scale), from the bud on top of the stem. The bud splits into several leaf-knots, that unfurl their bones horizontally (like a fist opening into a hand with outstretched and wide-spread long fingers), using the same cork-screw motion as the stem while it's growing upright. While the skeleton is unfolding, in between the larger bones (that will later function as veins) an openwork of capillaries create a thin, lace-like structure. The capillaries excrete a gluey substance, able to capture sunlight and dew and transform them into a thin film, that stretches between the capillaries. In that way the fully grown leaf looks like a massive green membrane, that filters the spectrum of sunlight, to make it gentler on the layers below.
 +
 +== Decay ==
 +
 +The decay of a canopy tree is as slow and gracious as its growth. As the tree dies, its life-supporting juices evaporate. It looses elasticity in all its parts, starting with the leaves. As the bones and capillaries in the leaves stiffen, the green membranes pop as soap bubbles, leaking fertile greenness on the layers below. At the same time, the roots release their nutrients back to the soil, opening up their skin until the roots have the same lace-like structure as the leaves. The colour fades from all parts of the tree, until it becomes a greyish white, resembling a lace made out of lime rock. Over time, the tree becomes more and more brittle and eroded by the elements. As the roots dissolve, the tree above ground can topple and fall, leaving broken up, ice-like landscapes on the floor of the garden (think of ice formations C.D. Friedrich's paintings). Over time, the  erosion will turn even these hard landscapes into fertile dust.
  
  
Line 31: Line 45:
  
 === Layer: Dwarf Trees === === Layer: Dwarf Trees ===
- 
 The multi-jointed balusters of these plants endlessly reach towards their kin, forming curved (sometimes gnarly, sometimes smooth) portals into and out of the world. On top of these portals, they sprout a meshwork of thin appendages that can also be joined with other plants, forming more or less dense tunnels, caves and niches - habitat for the darkness-loving flora. Through the various relationships with their brethren, these plants guide the shape of the landscape. By creating spaces of darkness, twilight and light, they attract and repel different species of lower growth.  They are able to flower and bear fruit and so communicate with the non-vegetal species, as well as channel information from the outside into the vegetal realm. With the slow dance of their balusters and appendages, they can sometimes enact scenes from other worlds, impersonating humans, animals and machines… The multi-jointed balusters of these plants endlessly reach towards their kin, forming curved (sometimes gnarly, sometimes smooth) portals into and out of the world. On top of these portals, they sprout a meshwork of thin appendages that can also be joined with other plants, forming more or less dense tunnels, caves and niches - habitat for the darkness-loving flora. Through the various relationships with their brethren, these plants guide the shape of the landscape. By creating spaces of darkness, twilight and light, they attract and repel different species of lower growth.  They are able to flower and bear fruit and so communicate with the non-vegetal species, as well as channel information from the outside into the vegetal realm. With the slow dance of their balusters and appendages, they can sometimes enact scenes from other worlds, impersonating humans, animals and machines…
 +
  
 == Roots == == Roots ==
 Underground their roots mirror their branches and hold the topsoil in place. They are quite extensive and sparse - the plants prefer thick roots over a mesh of rootlets. What they loose in density, they make up in length (first they spread horizontally to anchor the tree and secure it against wind gusts, then as stability is ensured, the roots start growing downwards, slowly and diagonally). The colour is that of rust - brown, red, blue, grey. Underground their roots mirror their branches and hold the topsoil in place. They are quite extensive and sparse - the plants prefer thick roots over a mesh of rootlets. What they loose in density, they make up in length (first they spread horizontally to anchor the tree and secure it against wind gusts, then as stability is ensured, the roots start growing downwards, slowly and diagonally). The colour is that of rust - brown, red, blue, grey.
 +
  
 == Reproduction == == Reproduction ==
-The dwarf trees reproduce sexually, ejaculating clouds of pollen across to each other. As the direction of the pollen isn't always well directed, they try to grow their branches as close to the plants they want to mate with. However, mistakes do happen and there are new hybrids are not uncommon. The male and female pollen have different, but compatible shapes. The female pollen resembles a balloon with a hairy tongue sticking far out of it. The Male pollen is smaller, a gooey blob resembling a ball of ice-cream. When they reach each other in the air, the blob falls onto the tongue and begins melting. The tongue retracts and starts dissolving as well. As the balloon begins filling up with liquid, it starts blistering and swelling, temporarily becoming lighter and travelling further on the wind. However, as the seed and the fruit around it start growing, the balloon becomes heavier and begins drifting towards the ground. +The dwarf trees reproduce sexually, ejaculating clouds of pollen across to each other. As the direction of the pollen isn't always well directed, they try to grow their branches as close to the plants they want to mate with. However, mistakes do happen and new hybrids are not uncommon. The male and female pollen have different, but compatible shapes. The female pollen resembles a balloon with a hairy tongue sticking far out of it. The male pollen is smaller, a gooey blob resembling a ball of ice-cream. When they reach each other in the air, the blob falls onto the tongue and begins melting. The tongue retracts and starts dissolving as well. As the balloon begins filling up with liquid, it starts blistering and swelling, temporarily becoming lighter and travelling further on the wind. However, as the seed and the fruit around it start growing, the balloon becomes heavier and begins drifting towards the ground.  
  
 == Seeds == == Seeds ==
-The seed of a dwarf tree is surrounded by a brightly coloured fruit-flesh (grown within the pollen-balloon) that decomposes in the ground and provides the growing seed with initial nutrients. The seed itself has a dark, smooth and hard outer shell and a complex mechanism of a chemical factory inside - botanical pumps, vials and transport conduits, allowing the seed to begin producing roots & shoots quickly (but also making sure that the factory remains sustainable for a long time).+The seed of a dwarf tree is surrounded by a translucent fruit-flesh (grown within the pollen-balloon) that decomposes in the ground and provides the growing seed with initial nutrients. The seed itself has a dark, smooth and hard outer shell and a complex mechanism of a chemical factory inside - botanical pumps, vials and transport conduits, allowing the seed to begin producing roots & shoots quickly (but also making sure that the factory remains sustainable for a long time).
  
 == Stems/Trunks ==  == Stems/Trunks == 
 +The trunks of these trees are quite stumpy, but their branches can be long and thin. The trunks look like balls on strings. The strings are the filaments that make up the thin appendages that eventually grow into branches. To begin with they are so delicate that they defy gravity and dangle playfully in the wind. They will grow and swing until they reach the appendages of another dwarf tree, which they will grip and entangle. Both trees will then begin to fill out the appendage until it becomes a branch and shoot new stringy appendages from their sides. Together, the branches of different trees will form tunnels, arches and canopies, shading the ground from direct sun.
  
 == Leaves == == Leaves ==
 +Most dwarf trees grow plentiful tiny green leaves, resembling long, downy fur. Close-up, the leaves are pinnate, spear-shaped, their edges undulate and the veins longitudinal. When the branches form tunnels, the leaves pack themselves together tightly, absorbing maximum sunlight. In that formation, they look and feel like a thick felt carpet. Some dwarf tree species sprout large, tough tent-like leaves from the tips of their branches, that can protect the delicate branches during storms. 
 == Flowers == == Flowers ==
 +Compared with the overall size of a dwarf tree, its female flowers are huge, sometimes as large as the plant itself. As the trees pollinate each other, they don't bother using colour or smell to attract insects and other pollinators. They are bright green, except when light falls on them exactly from above, turning them into a different colour (which reflects the mood of the plant). They are shaped as balloon pumps, sheltered from the weather by a few large petals. Each petal is a small tensile structure, forming a tent, or a canopy around the pollen pump. The flowers release to pollen by inflating the balloon, an action that releases the petals. Each flower can produce a maximum of 2-3 balloons. The male flowers are smaller, but more prolific - when they blossom, they will cover the whole tree, as a fluffy flower-coat over the trunk and the branches. Their shape is quite skeletal. As they bloom, they look like a fist opening up. While releasing pollen, the 'finger-petals' will close back into a fist to produce the pollen-ball, then rapidly open to release it. each male flower can produce hundreds of pollen balls in its lifetime. 
  
 == Fruit == == Fruit ==
 +The fruit of dwarf trees are solidified pollen-balloons. When they are fertilised and the seeds start growing, the balloons begin inflating. Clear coloured gooey strings begin stretching between the seed in the centre of the balloon and the outer shell. These strings will thicken as the fruit grows and form the fibres of the fruit flesh. In between the strings, the air becomes damp, sticky and heavy, thick with sweet mist. When the fruit reaches its optimal size (different per species), the flexible skin of the balloons solidifies until it resembles an ice crust. It then slowly floats towards the ground, where the crust will often burst upon impact, pushing the seed underground and releasing the nutrients from the flesh into the soil.
 +
 +
 +== Growth ==
 +
 +The solid balls of the trunks grow in spurts and are thick and strong for stability. Inside the balls there are elastic strings, that are grown continuously and keep the balls joined together. The strings also provide flexibility to the trunk, which makes it easier for the trees to lean towards and away from each other. The strings can split and grow into elongated appendages, which later grow into branches. The trunk and appendages grow in 'shifts' - a growth burst in the trunk, from whose sides a few delicate strings lengthen to become branches. T string in the centre of the ball continues upwards as the trunk. The branches are symmetrical and well proportioned if the tree is alone. If other dwarf trees are in the neighbourhood, the branches will elongate and reach towards the other trees, so the trunk needs to keep continuous balance between growing of the branches and thickening the trunk not to topple. In presence of other trees, dwarf trees will adjust their growth to match the other, so become able to form tunnels and caves woven from their branches.  If the trees are too far apart from each other to support the branch-structures, one of the trees will grow a new trunk, starting from the branches down to the ground. 
 +== Decay ==
 +
 +The first sign of a decay in a dwarf tree is that the network of its branches will loose strength, and begin caving in and bending towards the ground. This will usually destroy other plants underneath them, but also provide a structure for new plants to grow from. The thin strings in the trunks are the first to be eaten by scavengers, which loosens the thick trunk-balls. The balls topple over and roll on the ground in all directions. Eventually both the branches and the balls become overgrown, changing the undulation of the landscape.
  
  
Line 59: Line 86:
  
  
-These plants change their density and hardness depending on the presence and absence of external threats. In calm periods, they form thin, glass-like translucent screens, framed by their narrow, angular branches. In more turbulent times, or in parts of the world that need intimate and secluded spaces, the plants swell into fortified walls of woven thorns. The branches turn into spiky lengths of barbed wire, making the passage in/out of the world a very painful affair… +These plants change their density and hardness depending on the presence and absence of external threats. In calm periods, they form leafy green screens, framed by their narrow, angular branches. In more turbulent times, or in parts of the world that need intimate and secluded spaces, the plants swell into fortified walls of woven thorns. The branches turn into spiky lengths of barbed wire, making the passage in/out of the world a very painful affair… 
  
 == Roots ==  == Roots == 
Line 66: Line 93:
 == Reproduction == == Reproduction ==
 Some of these plants flower and fruit. In peaceful periods, they will allow non-plant species to pollinate them. Their pollen is a superglue-like substance that will coat anything that touches the flower. The only way to get rid of the glue is to find the flower of the same species on a different shrub and rub against it. The chemicals in the flower will dissolve the glue, freeing the carrier and at the same time absorbing the reproductive jucies. The flower rapidly dries up and  produces a spiky outer shell. Within the shell, a small berry is being formed. When its fully grown, the spikes will fall off and the berry will be ready to be eaten. The organisms that eat it will digest the fruit-flesh, and excrete  the seeds.  Some of these plants flower and fruit. In peaceful periods, they will allow non-plant species to pollinate them. Their pollen is a superglue-like substance that will coat anything that touches the flower. The only way to get rid of the glue is to find the flower of the same species on a different shrub and rub against it. The chemicals in the flower will dissolve the glue, freeing the carrier and at the same time absorbing the reproductive jucies. The flower rapidly dries up and  produces a spiky outer shell. Within the shell, a small berry is being formed. When its fully grown, the spikes will fall off and the berry will be ready to be eaten. The organisms that eat it will digest the fruit-flesh, and excrete  the seeds. 
-In turbulent periods, the plants' spiky screens reach each other and the pollination can occur through physical proximity. The spiky fruit shells can be expelled as cannon balls and the fruit forced down an intruder's throat. While hurting (and possibly killing the intruder), the plant insures that the seeds will be spread as well. The fruit can in some cases include pain-killers, almost as an apology for the aggressive behaviour.+In turbulent periods, the plants' spiky branches reach each other and the pollination can occur through physical proximity. The spiky fruit shells can be expelled as cannon balls and the fruit forced down an intruder's throat. While hurting (and possibly killing the intruder), the plant insures that the seeds will be spread as well. The fruit can in some cases include pain-killers, almost as an apology for the aggressive behaviour. 
  
  
 == Seeds == == Seeds ==
-The seeds are small, but in each berry there are many of them. They are also quite porous, like small sponges, able to absorb nutrients as they pass through the temporary hosts' digestive tract. (...)+The seeds are small, but in each berry there are many of them. They are also quite porous, like small fossilised sponges, able to absorb nutrients as they pass through the temporary hosts' digestive tract. Their shape is spherical, crystalline, composed of a mesh of hexagons and heptagons with semi-permeable membranes stretched between themThe mesh is usually bone-white, and the membranes a glowing emerald colourHowever, they both absorb the colour of the digestive system of their temporary hosts, so at the end, their outsides are dark brown with black bile.
  
 == Stems == == Stems ==
 +Shrubs have multiple stems, that in some plants grow into hard branches over time. The stems are tough, but flexible, able to assume different angles - they can combine horizontal, diagonal and vertical several times in one stem. Without leaves and flowers, they resemble tangles of hard wire meshes. Some shrubs have permanent thorns, while others sprout thorns and spikes only when in danger. Their thorns vary in size and thickness. The shrubs that are able to grow branches can nearly reach the height of a dwarf tree, while stem-shrubs stay closer to the ground.
  
 == Leaves == == Leaves ==
 +Shrub leaves are whorled, growing in rings around the stem, each leaf comprised of at least five leaflets. Their edges are sharp - serrated, or resembling spiky teeth. The veins mostly branch out from the stem towards the edges of the leaf. In danger the veins swell and harden, making the soft whorl of the leaf into a weapon. Some of the shrubs are able to pump poison through the veins before they harden, making contact with the leaves more or less deadly.
  
 == Flowers ==  == Flowers == 
 +Each stem can have one flower, growing from its tip. They are usually tiny and humble looking (like minuscule sunflowers), but strongly scented. 
  
-== Fruit == 
  
 +== Fruit ==
 +Fruiting shrubs produce berries, on the tips of the stems. As with the flowers, they are small and humble, but pungent and flavoursome, as well as  producing plentiful seeds.
 == Growth == == Growth ==
 +Shrubs grow multiple stems (that become hard branches over time) as soon as their shoot reaches sunlight above ground. Their goal is to spread as wide as possible and be as dense as possible. To grow wider, the branches grow horizontally first, then begin their growth upwards, but turning sharp corners. In calm periods, the branches will grow soft whorled leaves around the stems. These leaves turn hard and spiky when the plant is in danger.  
 +
 +== Decay ==
 +
 +A shrub decays by softening up. Its spikes and thorns become floppy and syrupy, eventually dripping down to the ground. The process of decay looks like slow melting.
  
  
Line 118: Line 155:
  
 Plants in this layer don't care much for the world above-ground, although they need some light to grow. They do sprout minuscule, horizontally-oriented, broad leafy formations, optimised to collect light and information. The collected materials pass thorough ergonomically designed shafts down to where these plants mean business - the shallow layer of soil. They are the edge between the life above and below ground. They are avid analysts of both and translators between the two. In their carefully grown rhizomes, they form elaborate networks without a centre. They prepare various concoctions of chemicals and data, to explain and influence the world (above and below). They communicate and mediate with all layers through their roots, rootlets and swollen stems.  Plants in this layer don't care much for the world above-ground, although they need some light to grow. They do sprout minuscule, horizontally-oriented, broad leafy formations, optimised to collect light and information. The collected materials pass thorough ergonomically designed shafts down to where these plants mean business - the shallow layer of soil. They are the edge between the life above and below ground. They are avid analysts of both and translators between the two. In their carefully grown rhizomes, they form elaborate networks without a centre. They prepare various concoctions of chemicals and data, to explain and influence the world (above and below). They communicate and mediate with all layers through their roots, rootlets and swollen stems. 
 +
  
  
Line 128: Line 166:
 == Tuber == == Tuber ==
 The tuber is not a seed, but acts in the same way as a seed - it is able to produce new roots and seedlings, when separated from the parent. It looks like a thick-set stalagmite, with several asymmetrical rings of oriental looking patterns around its irregular ginger-like shape. As it is usually broken off the parent, one of its ends is a rough cross-section. As soon as a tuber is put into the ground, it produces new rhizomes and a sprout. The colour of the tuber is the same as the roots (light orange-brown, with some red and purple tints). The tuber is not a seed, but acts in the same way as a seed - it is able to produce new roots and seedlings, when separated from the parent. It looks like a thick-set stalagmite, with several asymmetrical rings of oriental looking patterns around its irregular ginger-like shape. As it is usually broken off the parent, one of its ends is a rough cross-section. As soon as a tuber is put into the ground, it produces new rhizomes and a sprout. The colour of the tuber is the same as the roots (light orange-brown, with some red and purple tints).
 +== Leaves ==
 +
 +Some plants sprout just one giant leaf, others spread a bunch of leaves, all without a stem. The leaves are either round, or heart shaped, with smooth or spiny edges and reticulate veins. The leaves are thick, leathery and quite dark in colour. Some of the plants grow soft hair on the leaves, making them able to capture dew. 
 +
 +== Growth (above ground) ==
 +
 +These plants grow their leaves wherever light is available. If there is enough light close to the ground, they won't bother shooting upwards, they'll spread their broad, fern-like leaves horizontally across the surface. If higher plants are around them, the leaves will grow larger and taller until they reach the light. When they do, they will resume horizontal growth, gently curving in the process. 
 +
 +== Decay ==
 +
 +These plants decay by drying up and shrivelling. Their pores above and below ground widen and all moisture disappears. The drying tissues shrink and contract, until they become brittle and paper-like, slowly pulverising into dust. 
  
-Leaves 
  
-Growth 
  
  
  • groworld_story.txt
  • Last modified: 2022-10-14 13:14
  • by maja