This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| 17_equations [2024-05-05 10:35] – [Newton’s Law of Gravity] nik | 17_equations [2024-08-12 11:04] (current) – nik | ||
|---|---|---|---|
| Line 4: | Line 4: | ||
| - | ==== Pythagorean Theorem | + | === Pythagorean Theorem === |
| - | $a^2 + b^2 = c^2$ | + | $$a^2 + b^2 = c^2$$ |
| - | ==== Logarithms | + | ---- |
| + | === Logarithms === | ||
| - | $log{xy} = log{x} + log{y}$ | + | $$log{xy} = log{x} + log{y}$$ |
| - | ==== Calculus | + | ---- |
| + | === Calculus === | ||
| - | ==== Newton’s Law of Gravity ==== | + | $$\frac{\partial f}{\partial t} = \lim_{h\to\infty} = \frac{f{(t+h)}- f{(t)}}{h}$$ |
| - | ${F}_\text{gravity}=G\frac{m_{1}m_{2}}{r^{2}}$ | + | |
| - | ==== Complex Numbers ==== | + | |
| - | $i^2=-1$ | ||
| - | ==== Euler’s Formula for Polyhedra ==== | + | ---- |
| + | === Newton’s Law of Gravity | ||
| - | ==== Normal Distribution ==== | + | $${F}_\text{gravity}=G\frac{m_{1}m_{2}}{r^{2}}$$ |
| - | ==== Wave Equation ==== | + | ---- |
| + | === Complex Numbers | ||
| - | ==== Fourier Transform ==== | + | $$i^2=-1$$ |
| - | ==== Navier-Stokes Equation ==== | + | ---- |
| + | === Euler’s Formula for Polyhedra | ||
| - | ==== Maxwell’s Equations ==== | + | $$V-E+F=2$$ |
| + | ---- | ||
| + | === Normal Distribution | ||
| - | ==== Second Law of Thermodynamics ==== | + | $$\Phi(x)= \frac{1}{\sqrt{2\pi\rho}} e^{\frac{(x-\mu)^2}{2\rho^2}}$$ |
| - | $dS\geq0$ | + | ---- |
| + | === Wave Equation === | ||
| - | ==== Relativity ==== | + | $$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$ |
| - | $E=mc^2$ | + | ---- |
| + | === Fourier Transform === | ||
| - | ==== Schrodinger’s Equation ==== | + | $$f(\omega) |
| + | ---- | ||
| + | === Navier-Stokes Equation === | ||
| - | ==== Information Theory ==== | + | $$\rho\left(\frac{d\text{v}}{dt} + \text{v} \cdot \text{v}\nabla \right) |
| - | $H=-\sum p(x) + log{p(x)}$ | + | ---- |
| + | === Maxwell’s Equations === | ||
| - | ==== Chaos Theory ==== | + | $$\begin{aligned} |
| + | & | ||
| + | & | ||
| + | \end{aligned}$$ | ||
| - | $x_{t+1} = kx_t(1-x_i)$ | + | $$\begin{aligned} |
| + | & | ||
| + | & | ||
| + | \end{aligned}$$ | ||
| - | ==== Black-Scholes Equation ==== | + | ---- |
| + | === Second Law of Thermodynamics | ||
| + | $$dS\geq0$$ | ||
| + | |||
| + | ---- | ||
| + | === Relativity === | ||
| + | |||
| + | $$E=mc^2$$ | ||
| + | |||
| + | ---- | ||
| + | === Schrödinger’s Equation === | ||
| + | |||
| + | $$ih \frac{\delta}{\delta t}\Psi = H\Psi$$ | ||
| + | |||
| + | |||
| + | ---- | ||
| + | === Information Theory === | ||
| + | |||
| + | $$H=-\sum p(x) + log{p(x)}$$ | ||
| + | |||
| + | ---- | ||
| + | === Chaos Theory === | ||
| + | |||
| + | $$x_{t+1} = kx_t(1-x_i)$$ | ||
| + | |||
| + | ---- | ||
| + | === Black-Scholes Equation === | ||
| + | |||
| + | $$\frac{1}{2}\sigma^2S^2 \frac{\delta^2 V}{\delta S^2} + rS \frac{\delta V}{\delta S} + \frac{\delta V}{\delta t} - rV = 0$$ | ||
| + | |||
| + | ---- | ||